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It was recently shown in this laboratory [l] that 
the initial reaction in the photolysis of Q~-C~H~- 
W(C0)3R (R = CHsCH&H5) is substantially, if not 
completely, dissociation of a CO group. Cleavage of 
the W--CH3 bond appears to occur in coordinatively 
unsaturated Q~-C~H~W(CO)&H~. 

To ascertain how the absence of readily dissociable 
2electron neutral ligands such as CO influences the 
photochemistry of coordinatively saturated transi- 
tion metal-alkyl complexes we turned to $-C5H5Pt- 
(CH,), (I) [2]. This colorless compound with a 
‘piano-stool’ structure [3] possesses unusually high 
thermal stability (e.g., less than 1% decomposition 
in 75 min at 115 “C in toluene [4] ). The presence 
of platinum(IV) therein, as well as the availability 
of platinum(H) as a stable oxidation state, enhance 
the possibility of occurrence of photochemically 
induced reductive coupling of two CH3 groups. Other 
likely modes of photoreaction include homolysis 
of the Pt-CH3 bond and a-hydrogen elimination [S] . 
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The electronic spectrum of I in cyclohexane is 
shown in Fig. 1; two absorption bands are observed 
at 254 (log e = 4.03) and 289 nm (log E = 3.34). 
Irradiations were carried out on carefully degassed 
solutions of 1 (generally 1O-3 to lo-* M> in hydro- 
carbon solvents (benzene, cyclohexane, methyl- 
cyclohexane, or cyclooctane) in quartz tubes with 
300- or 350-nm lamps of a Rayonet Model RPR-100 
reactor. Immediately the solutions turn yellow (h,, 
hl 420 nm) and gas is evolved. The quantum yield for 
the disappearance of I in CH3C6Hll at 350 nm is 
4.4 X 10m3. On continued photolysis the yellow color 
of the solutions deepens, and then becomes yellow- 
brown and dark red-brown. Gas evolution slows 
considerably with time. If air is not rigorously 
excluded, metallic platinum precipitates from solu- 
tion. 

Irradiation of a benzene solution of 1 and phenyl 
N-tert-butyl nitrone in a quartz tube immediately 

Fig. 1. Electronic spectrum of I (7.2 X 10 A M) in cyclo- 
hexane at room temperature. 

leads to the appearance of an ESR signal character- 
istic of the C6H5CH(CH3)N(0)C(CH3)3 radical 
[6]. Similarly, irradiation of 1 in the presence of 
nitrosodurene either in the Rayonet reactor (CsH6 
solution) or in the cavity of an ESR instrument 
(CHCl, solution) immediately produces a signal of 
the CH3 spin-adduct [7]. No signals are observed 
in the absence of the spin traps. 

To obviate any possibility that the spin trap 
induces homolysis of the Pt-CH3 bond during 
irradiation, a frozen solution of 1 in petroleum ether 
at liquid Nz temperature was photolyzed in the 
cavity of an ESR instrument. Two signals were 
observed: one due to the CH3 radical (quartet, aH = 
22.5 G) [8] and the other to an unidentified, 
probably Pt-containing species (-350-G broad 
signal at 2668 G, g = 2.47). 

Gas chromatographic analysis of the gases above 
the photolyzed cyclooctane solution of I revealed 
the formation of methane (90 f l%), ethane (5 + 1%) 
and ethylene (5 + 1%). This composition appears to 
show little variation with the duration of photo- 
lysis up to 3 h, at which time evolution of gas is very 
slow. After 3 h, the collected gases corresponded 
to approximately one-third of the CH3 ligands 
initially present in 1 that underwent photoreaction. 
Close to one-half of 1 remained unchanged and was 
recovered after thermolysis (vi& in@). Thermal 
treatment (10-15 h, 55-77 “C) at this time of the 
photolyzed solution yielded metallic Pt, the gases 

(36 and C2H4 (approximately 89:3:8), 
Eyl$, and dimer (5%*), CH3C5H5 and dimer (340/o*), 
and unreacted 1. By comparison, thermolysis of I 

*Based on reacted I. 
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in toluene has been reported [4] to give metallic 
Pt, C&, and ‘relatively small amounts’ of C,H,s and 

Hz. 
To ascertain the origin of the hydrogen atoms in 

the methane formed during photolysis, deuterium- 
labeled T$-CsH,Pt(CD3)s (Id,) and $-CsDsPt- 
(CH,), (I-d,) were prepared and irradiated under 
the conditions that mirrored those for 1. The 
methanes collected during the photolysis of I-d9 
were shown by high resolution mass spectrometry to 
consist of 45% CD, and 55% CHDs, whereas those 
formed during the photolysis of Ids analyzed for 
95% CH4 and 5% CHsD. In each case, there was 
little or no CHsD,. These results are explicable in 
terms of the CH3 acquiring a hydrogen atom from 
other CHs groups (>45%), n5-CsHs (>5%), and 
solvent C8H16 (<50%). Since isotopic selectivities, 
kH/kD, for the CHs radical attacking a given CH/CD 
are substantial (5.2-5.6 [9-l I] ), the relative 
contributions of the three sources of hydrogen atom 
cannot be determined more precisely from the above 
data alone. That the CHs picks up hydrogen originat- 
ing from the CH3 groups of other molecules of 1 (as 
contrasted with the hydrogen of the CH3 groups of 
its own molecule) is illustrated by the results of the 
photolysis of 50:50 1:1-d,. The methanes included 
CH4 (43%) CH3D (8%) CHD3 (41%) and CD4 
(8%) the presence of CH3D showing that CHs 
acquires deuterium from the CD3 groups. The ethanes 
contained CzHs, CZH3D3, and C2D6 in an approx- 
imate ratio 1:2 : 1. 

The following conclusions may be drawn from the 
results of this investigation. 

1) It has been shown unequivocally that irradia- 
tion of I leads to homolysis of the Pt-CH3 bond: 

hv 
n5-CsH&(CH& - 

Dissociation of a 2electron neutral ligand, which 
often complicates the interpretation of data from 
photolysis of metal alkyl carbonyls and related com- 
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plexes, does not enter into consideration in this 
case. There is no competing dissociation of CsHs 
as evidenced by ESR spectroscopy. Moreover, 
a-hydrogen elimination and reductive coupling of 
methyl radicals occur to a negligible extent, if at all; 
this is shown by the virtual lack of formation of 
CHzDz and by an approximate ratio 1:2:1 of the 
ethanes, CZH6:CZH3D3:CZD6, in the aforementioned 
experiments with deuterium-labeled 1. 

2) The methyl radical picks up hydrogen with 
little selectivity in affording methane. This hydro- 
gen originates from the CHa groups, $-CsHs, and 
solvent Ca HI+ 

Experiments are under way to delineate various 
reactions following Pt-CHs bond homolysis and to 
identify Pt-containing species formed in the photo- 
lysis. 
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